Document Sections PDF

I. Introduction

II. Virtual Instrument - Hardware

III. Virtual Instrument

- Software

Results and Discussion

V. Conclusion

Authors **Figures**

References Citations

Keywords

Metrics

More Like This

Abstract: The work presents a biomedical instrument for unobtrusive heart rate variability measurement, using ballistocardiographyc (BCG) signal based on electromechanical film sen... View more

Metadata

Abstract:

The work presents a biomedical instrument for unobtrusive heart rate variability measurement, using ballistocardiographyc (BCG) signal based on electromechanical film sensors (EMFi sensor). The ballistocardiogram acquired signals from subjects sitting on a chair is processed in order to improve its signal-to-noise ratio (SNR) using adaptive neuronal network filtering. The accuracy of beat-to-beat intervals detection using ballistocardiography was tested by comparing the heart rate obtained by simultaneously monitoring the electrocardiogram (EKG) and pulse frequency in young healthy subjects. The results show no statistically relevant differences between the heart rate obtained by BCG in comparison with EKG and pulse frequency measurement. By including wavelet analysis of the heart rate variability (HRV), the prototype system permits a more natural lifestyle monitoring of physiological parameters.

Published in: 2007 Canadian Conference on Electrical and Computer Engineering

Date of Conference: 22-26 April 2007 **INSPEC Accession Number: 9701946** Date Added to IEEE Xplore: 30 July 2007 DOI: 10.1109/CCECE.2007.224

Publisher: IEEE

ISBN Information: Print ISSN: 0840-7789 **Conference Location:** Vancouver, BC, Canada

Contents

I. Introduction

The heart rate obtained using electrocardiography (EKG) impedance cardiogram (ICG) or pulse measurement gives information on several physical and mental stresses, emergency situations, such as a cardiac

arrest, and also on neural control of the heart in various real-life conditions. An unobtrusive alternative to the electrocardiography and impedance cardiogram is ballistocardiography (BCG) defined as a method by which body vibigations cause in the first methods for heart and respiration rate measurements [1], [2] BCG was characterized in early times by important limitations related to the force and vibration sensors, data acquisition and data processing capabilities. The latest developments in those three domains [3], [4], [5] made the BCG an interesting method with good results [6], [7] on cardiac activity monitoring.

Authors	~
Figures	~
References	~
Citations	~
Keywords	~
Metrics	~

TEEE Personal Account

CHANGE USERNAME/PASSWORD

PAYMENT OPTIONS

VIEW PURCHASED DOCUMENTS

PROFESSION AND EDUCATION

TECHNICAL INTERESTS

CONTACT & SUPPORT

Follow

f in y

COMMUNICATIONS PREFERENCES

US & CANADA: +1 800 678 4333

F in y

CONTACT & SUPPORT

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IEEE AccountPurchase DetailsProfile InformationNeed Help?» Change Username/Password» Payment Options» Communications Preferences» US & Canada: +1 800 678 4333» Update Address» Order History» Profession and Education» Worldwide: +1 732 981 0060» View Purchased Documents» Technical Interests» Contact & Support

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.